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Communicated by Th. Walcher

Abstract. We show that the recently constructed complete and “minimal” third-order meson-baryon ef-
fective chiral Lagrangian can be further reduced from 84 to 78 independent operators.

PACS. 12.39.Fe Chiral Lagrangians

Recently, Oller et al. [1] have presented a complete
and “minimal” chiral effective Lagrangian for three-flavor
baryon chiral perturbation theory to third order in the
chiral expansion, utilizing the methods outlined in ref. [2]
for constructing the fourth-order two-flavor effective La-
grangian. The first attempt to construct the SU(3) meson-
baryon Lagrangian goes back to Krause [3]. However, he
made no attempt at minimizing the number of indepen-
dent operators at third order. We are presently construct-
ing the minimal fourth-order SU(3) Lagrangian for Gold-
stone bosons coupled to the ground-state baryon octet
and external sources. As a by-product we show in this
note that the number of 84 independent third-order oper-
ators in ref. [1] can further be reduced by a combination
of using certain Cayley-Hamilton relations and the baryon
equations of motion.

The chiral effective Lagrangian can be constructed by
writing down the pertinent building blocks to generate
chirally invariant operators at a given order in the chi-
ral expansion. The building blocks are expressed in terms
of the standard meson matrices U, u2 = U , the baryon
matrix B, and the external sources χ = s+ ip, rµ, lµ:

uµ = iu†∇µUu
† = −iu∇µU

†u ,

χ± = uχ†u± u†χu† ,

F±µν = u†Rµνu± uLµνu
† . (1)

? This research is part of the EU Integrated Infrastructure
Initiative Hadron Physics Project under contract number RII3-
CT-2004-506078. This work is supported in part by DFG
(SFB/TR 16 “Subnuclear Structure of Matter”).

a e-mail: mfrink@itkp.uni-bonn.de
b e-mail: meissner@itkp.uni-bonn.de

Here,

∇µU = ∂µU − irµU + iUlµ ,

Rµν = ∂µrν − ∂νrµ − i [rµ, rν ] , (2)

in terms of the commutator [ , ], and similarly for lµ.
The covariant derivative acting on any field X = B, uµ, . . .
reads

[Dµ, X] = ∂µX + [Γµ, X] , (3)

where Γµ is given by

Γµ =
1

2

[

u†, ∂µu
]

−
i

2

(

u†rµu+ ulµu
†
)

. (4)

To proceed, one has to assign a chiral dimension to these
building blocks. We work here in standard chiral perturba-
tion theory, that is all fields are of order q0 (where q is the
small expansion parameter), and so are derivatives acting
on baryon fields. Derivatives applied to meson or external
fields, vector and axial-vector sources are O(q), and the
field strength tensors as well as the scalar and pseudoscalar
sources are O(q2). The latter assignment reflects the fact
that the Goldstone boson masses squared are proportional
to the quark masses at leading order in the chiral expan-
sion. Consequently, the leading-order effective Lagrangian
is of chiral order one, next–to–leading-order corrections
are of order two, and the first loop contributions appear
at third order together with the local contact interactions
that are considered in this note. Thus, the effective La-
grangian takes the form

LMB = L
(1)
MB + L

(2)
MB + L

(3)
MB + . . . , (5)

where the ellipsis denotes higher-order terms.
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We skip here any technical details how to construct
the effective Lagrangian from the building blocks, apart
from certain relations that are utilized to further minimize
the number of third-order operators. For these details, we

refer to refs. [1,2,4]. We fully agree with L
(2)
MB in eq. (5.1)

of ref. [1]. In L
(3)
MB in eq. (5.2), however, six of the 84

terms listed there are redundant by one of the following
mechanisms:

– SU(3) Cayley-Hamilton trace identities;
– the lowest-order baryon equation of motion
iγµ [Dµ, B] = m0B + O(q), with m0 the octet
baryon mass in the chiral limit.

The Cayley-Hamilton identities allow to discard five of

the structures in L
(3)
MB in ref. [1], e.g. O20, O21, O22, O35,

O36. The details of this procedure are spelled out in ap-
pendix A.

We now give details how a further reduction of the
number of terms is achieved. By means of the lowest-
order baryon equation of motion monomials containing
γµ [Dµ, B] can be reduced to the corresponding structures
without the covariant derivative and higher-order contri-
butions. Revealing prospective Lagrangian terms to be re-
dundant means exposing those γµ [Dµ, B] structures wher-
ever they occur hidden in the Clifford algebra. In ref. [1]
this procedure is implemented in terms of the relations
eqs. (4.4)–(4.10). Some of these equations are, however,
interrelated and their full content cannot be unraveled
by treating them as separate identities. To illustrate this
feature consider the following third-order combination of
building blocks comprising two mesonic fields uλ, uρ to-
gether with two covariant derivatives, where one derivative

D̃ν acts on meson fields, as indicated by the tilde symbol,
and the other one, Dµ, acts on the baryon matrix:

(uλ, uρ, D̃ν , Dµ)↔ (εµνρλ, gµνσρλ, gµνgρλ, . . .). (6)

The left-hand side gives rise to invariants by combing
meson and baryon matrices into products of traces and
applying the covariant derivatives. Having one derivative
each act on the two types of fields involved, one specific
trace configuration generates contributions referred to as
DµD̃ν-terms and accordingly for D̃µDν . As suggested by
the right-hand side of eq. (6), the four Lorentz indices
can be contracted with the totally anti-symmetric ten-
sor ε, a product of one metric tensor g and one anti-
symmetric Clifford-algebra element σ, or else two metric
tensors, where the ellipsis indicates that any ordering of
the indices is possible, up to occurring index symmetries.
Consider now the two structures σµρgνλ, gµρσνλ. The fol-
lowing identities among Clifford-algebra elements:

gµρgνλ = −iσµρgνλ + γργµgνλ

= −igµρσνλ + gµργλγν , (7)

are the basis of eq. (4.4) in ref. [1], which implies that

σµρgνλ in connection with the DµD̃ν-terms is eliminated
in favor of gµρgνλ, and accordingly for gµρσνλ contracted

with the D̃µDν-configurations. If all DµD̃ν- as well as

D̃µDν-terms are summed up, the covariant derivatives
can be reshuffled by a total derivative argument to act
on baryon fields only, thus producing a DµDν-structure.
σµρgνλ contracted with this structure is related by the
eliminating index µ to gµρgνλ, which, in turn, can be
connected to the corresponding contribution including
gµρσνλ by means of manipulations in the index ν. There-
fore, the above DµDν-term contracted with the difference
σµρgνλ−gµρσνλ can be ignored making use of the baryon
equations of motion. As DµDν is symmetric in the indices

µ and ν, this leads to the elimination of one DµD̃ν- or

D̃µDν-contribution associated with a field configuration
anti-symmetric in the indices ρ and λ contracted with,
say, σµρgνλ. Since this Clifford structure reduces the com-
bination [Dµ, uρ] via the relation [Dµ, uρ]−[Dρ, uµ] = F−µρ,
we are left with two prospective terms including [Dµ, uλ]
which are not independent: one of the monomials O9, O10

in L
(3)
MB from ref. [1] is redundant. Thus, together with

the five operators removed by use of the Cayley-Hamilton
relations, we have reduced the number of independent op-
erators from 84 to 78.

We furthermore remark that O41 in ref. [1] has the
wrong behavior under charge conjugation. Adopting the
notation used there the operation of charge conjugation is
given by

〈BσλτDρB〉〈u
µuνuρ〉εµνλτ

C
−→ −〈B

←

Dρ σ
λτB〉〈uνuµuρ〉εµνλτ , (8)

where use has been made of the cyclic property of the
trace. Accounting for the inverted order of fields in the fi-
nal trace by an index exchange induces a change in the rel-
ative sign. The proper charge conjugation invariant struc-
ture is of higher order and the remark stating an abnormal
non-relativistic power-counting behavior for this term is
then rendered pointless.

Similarly, the ordering of indices in the monomials O31,
O33, and O34 does not match the conditions imposed by
charge conjugation. In the notation used there, the invari-
ant assignment of indices, e.g., for O31 reads, given the
symmetric product of covariant derivatives:

〈Bγ5γµDνρBu
µuνuρ〉+ 〈B

←

Dνρ γ5γµBu
νuρuµ〉 . (9)

We finally present a list of the Lagrangian invariants
where the above corrections have been accounted for:

L
(3)
MB =

78
∑

i=1

diO
(3)
i . (10)

The explicit terms are collected in table 1. The basis cho-
sen is different from the one in ref. [1]. All third-order

LECs di accompanying the operators O
(3)
i are of dimen-

sion mass−2 . Using the same techniques, we are presently
constructing the complete and minimal fourth-order La-
grangian for SU(3) baryon chiral perturbation theory. The
terms are needed for any complete one-loop calculation
(for the example of the baryon masses at fourth order,
see, e.g., ref. [5] and references therein).
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Table 1. Operators of L
(3)
MB . For definitions, see refs. [1, 2].

i O
(3)
i

1 m0Tr
{

Bγ5
[

χ−, B
]}

2 m0Tr
{

Bγ5
{

χ−, B
}}

3 m0Tr
{

Bγ5B
}

Tr
{

χ−
}

4 i
(

Tr
{

Bεµνρτγτ [[uµ, uν ] , [uρ, B]]
}

+Tr
{

Bεµνρτγτ [uρ, [[uµ, uν ] , B]]
}

)

5 i
(

Tr
{

Bεµνρτγτ [[uµ, uν ] , {uρ, B}]
}

+Tr
{

Bεµνρτγτ {uρ, [[uµ, uν ] , B]}
}

)

6 i
(

Tr
{

Bεµνρτγτ {[uµ, uν ] , [uρ, B]}
}

+Tr
{

Bεµνρτγτ [uρ, {[uµ, uν ] , B}]
}

)

7 i
(

Tr
{

Bεµνρτγτ {[uµ, uν ] , {uρ, B}}
}

+Tr
{

Bεµνρτγτ {uρ, {[uµ, uν ] , B}}
}

)

8 iTr
{

BεµνρτγτB
}

Tr {uµ [uν , uρ]}

9 Tr
{

Bγµγ5 [uν , [u
ν , [uµ, B]]]

}

+Tr
{

Bγµγ5 [uµ, [uν , [u
ν , B]]]

}

10 Tr
{

Bγµγ5 [uν , [u
ν , {uµ, B}]]

}

+Tr
{

Bγµγ5 {uµ, [uν , [u
ν , B]]}

}

11 Tr
{

Bγµγ5 [uν , {u
ν , [uµ, B]}]

}

+Tr
{

Bγµγ5 [uµ, {uν , [u
ν , B]}]

}

12 Tr
{

Bγµγ5 [uν , {u
ν , {uµ, B}}]

}

+Tr
{

Bγµγ5 {uµ, {uν , [u
ν , B]}}

}

13 Tr
{

Bγµγ5 {uν , {u
ν , [uµ, B]}}

}

+Tr
{

Bγµγ5 [uµ, {uν , {u
ν , B}}]

}

14 Tr
{

Bγµγ5 {uν , {u
ν , {uµ, B}}}

}

+Tr
{

Bγµγ5 {uµ, {uν , {u
ν , B}}}

}

15 Tr
{

Bγµγ5 [[uν , [u
ν , uµ]] , B]

}

16 Tr
{

Bγµγ5 {[uν , [u
ν , uµ]] , B}

}

17 Tr
{

Buν
}

γµγ5Tr {{uν , uµ}B}+Tr
{

B {uν , uµ}
}

γµγ5Tr {uνB}

18 Tr
{

Buν
}

γµγ5Tr {[uν , uµ]B} − Tr
{

B [uν , uµ]
}

γµγ5Tr {uνB}

19 Tr
{

Bγµγ5B
}

Tr {uµuνu
ν}

20 iTr
{

Bγµ [[[Dµ, uν ] , u
ν ] , B]

}

21 iTr
{

Bγµ {[[Dµ, uν ] , u
ν ] , B}

}

22 i
(

Tr
{

Buν
}

γµTr {[Dµ, u
ν ]B} − Tr

{

B [Dµ, uν ]
}

γµTr {uνB}
)

23 i

2m0

(

Tr
{

Bσµν [[Dµ, uρ] , [uν , [D
ρ, B]]]

}

+Tr
{

Bσµν [Dρ, [uν , [[Dµ, u
ρ] , B]]]

}

)

24 i

2m0

(

Tr
{

Bσµν [[Dµ, uρ] , {uν , [D
ρ, B]}]

}

+Tr
{

Bσµν [Dρ, {uν , [[Dµ, u
ρ] , B]}]

}

)

25 i

2m0

(

Tr
{

Bσµν {[Dµ, uρ] , {uν , [D
ρ, B]}}

}

+Tr
{

Bσµν [Dρ, {uν , {[Dµ, u
ρ] , B}}]

}

)

26 i

m0

(

Tr
{

Bσµν [Dρ, B]
}

Tr {[Dµ, u
ρ]uν}+

1
2
Tr

{

BσµνB
}

Tr {[Dρ, [Dµ, u
ρ]]uν}

+ 1
2
Tr

{

BσµνB
}

Tr {[Dµ, uρ] [D
ρ, uν ]}

)

27 i

2m2

0

(

Tr
{

Bγµ [[[Dµ, uν ] , uρ] , [D
ν , [Dρ, B]]]

}

+Tr
{

Bγµ [Dρ, [Dν , [[[Dµ, u
ν ] , uρ] , B]]]

}

)

28 i

2m2

0

(

Tr
{

Bγµ {[[Dµ, uν ] , uρ] , [D
ν , [Dρ, B]]}

}

+Tr
{

Bγµ [Dρ, [Dν , {[[Dµ, u
ν ] , uρ] , B}]]

}

)

29 i

m2

0

(

Tr
{

Buρ
}

γµTr {[Dµ, uν ] [D
ν , [Dρ, B]]} − Tr

{

B [Dµ, uν ]
}

γµTr {uρ [D
ρ, [Dν , B]]}

−Tr
{

B [Dν , [Dµ, u
ν ]]
}

γµTr {uρ [D
ρ, B]} − Tr

{

B [Dµ, uν ]
}

γµTr {[Dν , uρ] [D
ρ, B]}

−Tr
{

B [Dρ, [Dµ, uν ]]
}

γµTr {uρ [Dν , B]} − Tr
{

B [Dµ, uν ]
}

γµTr {[Dρ, u
ρ] [Dν , B]}

−Tr
{

B [Dρ, [Dν , [Dµ, u
ν ]]]

}

γµTr {uρB} − Tr
{

B [Dρ, [Dµ, uν ]]
}

γµTr {[Dν , uρ]B}

−Tr
{

B [Dν , [Dµ, u
ν ]]
}

γµTr {[Dρ, u
ρ]B} − Tr

{

B [Dµ, uν ]
}

γµTr {[Dρ, [D
ν , uρ]]B}

)

30 1
2m0

(

Tr
{

Bσµνγ5 [uµ, {uν , [uρ, [D
ρ, B]]}]

}

+Tr
{

Bσµνγ5 [Dρ, [u
ρ, {uν , [uµ, B]}]]

}

)

31 1
2m0

(

Tr
{

Bσµνγ5 [uµ, {uν , {uρ, [D
ρ, B]}}]

}

+Tr
{

Bσµνγ5 [Dρ, {u
ρ, {uν , [uµ, B]}}]

}

)
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Table 1. Continued.

i O
(3)
i

32 1
2m0

(

Tr
{

Bσµνγ5 [[uµ, [uν , uρ]] , [D
ρ, B]]

}

+Tr
{

Bσµνγ5 [Dρ, [[uµ, [uν , u
ρ]] , B]]

}

)

33 1
2m0

(

Tr
{

Bσµνγ5 {[uµ, [uν , uρ]] , [D
ρ, B]}

}

+Tr
{

Bσµνγ5 [Dρ, {[uµ, [uν , u
ρ]] , B}]

}

)

34 1
m0

(

Tr
{

Buµ
}

σµνγ5Tr {{uν , uρ} [D
ρ, B]}+Tr

{

B {uν , uρ}
}

σµνγ5Tr {uµ [D
ρ, B]}

+Tr
{

B {[Dρ, uν ] , u
ρ}
}

σµνγ5Tr {uµB}+Tr
{

B {uν , [Dρ, u
ρ]}

}

σµνγ5Tr {uµB}

+Tr
{

B {uν , uρ}
}

σµνγ5Tr {[Dρ, uµ]B}
)

35 1
m0

(

Tr
{

Buρ
}

σµνγ5Tr {[uµ, uν ] [D
ρ, B]} − Tr

{

B [uµ, uν ]
}

σµνγ5Tr {uρ [D
ρ, B]}

−Tr
{

B [[Dρ, uµ] , uν ]
}

σµνγ5Tr {uρB} − Tr
{

B [uµ, [Dρ, uν ]]
}

σµνγ5Tr {uρB}

−Tr
{

B [uµ, uν ]
}

σµνγ5Tr {[Dρ, u
ρ]B}

)

36 1
2m2

0

(

Tr
{

Bγµγ5 [uµ, [uν , [uρ, [D
ν , [Dρ, B]]]]]

}

+Tr
{

Bγµγ5 [Dρ, [Dν , [u
ρ, [uν , [uµ, B]]]]]

}

)

37 1
2m2

0

(

Tr
{

Bγµγ5 [uµ, {uν , [uρ, [D
ν , [Dρ, B]]]}]

}

+Tr
{

Bγµγ5 [Dρ, [Dν , [u
ρ, {uν , [uµ, B]}]]]

}

)

38 1
2m2

0

(

Tr
{

Bγµγ5 {uµ, [uν , {uρ, [D
ν , [Dρ, B]]}]}

}

+Tr
{

Bγµγ5 [Dρ, [Dν , {u
ρ, [uν , {uµ, B}]}]]

}

)

39 1
2m2

0

(

Tr
{

Bγµγ5 {uµ, {uν , {uρ, [D
ν , [Dρ, B]]}}}

}

+Tr
{

Bγµγ5 [Dρ, [Dν , {u
ρ, {uν , {uµ, B}}}]]

}

)

40 1
m2

0

(

Tr
{

Bγµγ5 [Dν , [Dρ, B]]
}

Tr {uµ {u
ν , uρ}}+Tr

{

Bγµγ5 [Dν , B]
}

Tr {[Dρ, uµ] {u
ν , uρ}}

+Tr
{

Bγµγ5 [Dν , B]
}

Tr {uµ {[Dρ, u
ν ] , uρ}}+Tr

{

Bγµγ5 [Dν , B]
}

Tr {uµ {u
ν , [Dρ, u

ρ]}}
)

41 Tr
{

Bγµγ5
[

uµ,
[

χ+, B
]]}

+Tr
{

Bγµγ5
[

χ+, [uµ, B]
]}

42 Tr
{

Bγµγ5
[

uµ,
{

χ+, B
}]}

+Tr
{

Bγµγ5
{

χ+, [uµ, B]
}}

43 Tr
{

Bγµγ5
{

uµ,
[

χ+, B
]}}

+Tr
{

Bγµγ5
[

χ+, {uµ, B}
]}

44 Tr
{

Bγµγ5
{

uµ,
{

χ+, B
}}}

+Tr
{

Bγµγ5
{

χ+, {uµ, B}
}}

45 Tr
{

Bγµγ5 [uµ, B]
}

Tr
{

χ+
}

46 Tr
{

Bγµγ5 {uµ, B}
}

Tr
{

χ+
}

47 Tr
{

Bγµγ5B
}

Tr
{

uµχ
+
}

48 Tr
{

Bγµ
[[

uµ, χ
−

]

, B
]}

49 Tr
{

Bγµ
{[

uµ, χ
−

]

, B
}}

50 Tr
{

Buµ
}

γµTr
{

χ−B
}

− Tr
{

Bχ−
}

γµTr {uµB}

51 Tr
{

Bγµ
[[

Dν , F+
µν

]

, B
]}

52 Tr
{

Bγµ
{[

Dν , F+
µν

]

, B
}}

53 Tr
{

Bεµνρτγτ
[

uµ,
[

F+
νρ, B

]]}

+Tr
{

Bεµνρτγτ
[

F+
νρ, [uµ, B]

]}

54 Tr
{

Bεµνρτγτ
[

uµ,
{

F+
νρ, B

}]}

+Tr
{

Bεµνρτγτ
{

F+
νρ, [uµ, B]

}}

55 Tr
{

Bεµνρτγτ
{

uµ,
[

F+
νρ, B

]}}

+Tr
{

Bεµνρτγτ
[

F+
νρ, {uµ, B}

]}

56 Tr
{

Bεµνρτγτ
{

uµ,
{

F+
νρ, B

}}}

+Tr
{

Bεµνρτγτ
{

F+
νρ, {uµ, B}

}}

57 Tr
{

BεµνρτγτB
}

Tr
{

uµF
+
νρ

}

58 iTr
{

Bγµγ5
[[

uν , F+
µν

]

, B
]}

59 iTr
{

Bγµγ5
{[

uν , F+
µν

]

, B
}}

60 i
(

Tr
{

Buν
}

γµγ5Tr
{

F+
µνB

}

− Tr
{

BF+
µν

}

γµγ5Tr {uνB}
)

61 i

2m0

(

Tr
{

Bσµνγ5
[[

uµ, F
+
νρ

]

, [Dρ, B]
]}

+Tr
{

Bσµνγ5
[

Dρ,
[[

uµ, F
+
νρ

]

, B
]]}

)

62 i

2m0

(

Tr
{

Bσµνγ5
{[

uµ, F
+
νρ

]

, [Dρ, B]
}}

+Tr
{

Bσµνγ5
[

Dρ,
{[

uµ, F
+
νρ

]

, B
}]}

)
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Table 1. Continued.

i O
(3)
i

63 i

m0

(

Tr
{

Buµ
}

σµνγ5Tr
{

F+
νρ [D

ρ, B]
}

− Tr
{

BF+
νρ

}

σµνγ5Tr {uµ [D
ρ, B]}

−Tr
{

B
[

Dρ, F+
νρ

]}

σµνγ5Tr {uµB} − Tr
{

BF+
νρ

}

σµνγ5Tr {[Dρ, uµ]B}
)

64 Tr
{

Bγµγ5
[[

Dν , F−µν
]

, B
]}

65 Tr
{

Bγµγ5
{[

Dν , F−µν
]

, B
}}

66 Tr
{

Bεµνρτγτγ
5
[

uµ,
[

F−νρ, B
]]}

+Tr
{

Bεµνρτγτγ
5
[

F−νρ, [uµ, B]
]}

67 Tr
{

Bεµνρτγτγ
5
[

uµ,
{

F−νρ, B
}]}

+Tr
{

Bεµνρτγτγ
5
{

F−νρ, [uµ, B]
}}

68 Tr
{

Bεµνρτγτγ
5
{

uµ,
[

F−νρ, B
]}}

+Tr
{

Bεµνρτγτγ
5
[

F−νρ, {uµ, B}
]

)
}

69 Tr
{

Bεµνρτγτγ
5
{

uµ,
{

F−νρ, B
}}}

+Tr
{

Bεµνρτγτγ
5
{

F−νρ, {uµ, B}
}}

70 Tr
{

Bεµνρτγτγ
5B

}

Tr
{

uµF
−

νρ

}

71 iTr
{

Bγµ
[[

uν , F−µν
]

, B
]}

72 iTr
{

Bγµ
{[

uν , F−µν
]

, B
}}

73 i
(

Tr
{

Buν
}

γµTr
{

F−µνB
}

− Tr
{

BF−µν
}

γµTr {uνB}
)

74 i

2m0

(

Tr
{

Bσµν
[

uµ,
[

F−νρ, [D
ρ, B]

]]}

+Tr
{

Bσµν
[

Dρ,
[

F−νρ, [uµ, B]
]]}

)

75 i

2m0

(

Tr
{

Bσµν
[

uµ,
{

F−νρ, [D
ρ, B]

}]}

+Tr
{

Bσµν
[

Dρ,
{

F−νρ, [uµ, B]
}]}

)

76 i

2m0

(

Tr
{

Bσµν
{

uµ,
[

F−νρ, [D
ρ, B]

]}}

+Tr
{

Bσµν
[

Dρ,
[

F−νρ, {uµ, B}
]]}

)

77 i

2m0

(

Tr
{

Bσµν
{

uµ,
{

F−νρ, [D
ρ, B]

}}}

+Tr
{

Bσµν
[

Dρ,
{

F−νρ, {uµ, B}
}]}

)

78 i

m0

(

Tr
{

Bσµν [Dρ, B]
}

Tr
{

uµF
−

νρ

}

+ 1
2
Tr

{

BσµνB
}

Tr
{

[Dρ, uµ]F
−

νρ

}

+ 1
2
Tr

{

BσµνB
}

Tr
{

uµ
[

Dρ, F−νρ
]}

)

We are grateful to Bastian Kubis for useful comments.

Appendix A. Cayley-Hamilton relations

The following notation is introduced to classify Cayley-
Hamilton identities: a relation consisting of a vanishing
sum of traces and products thereof is referred to by the
term in the sum that contains the trace extending over
the maximum number of matrices. Applied to the case
of three matrix-valued fields A1, A2, A3 included, together
with the baryon fields B,B, in one or several traces, 15 in-
dependent identities result for complex 3×3 matrices. For-
mulated as invariants with definite behavior under charge
conjugation, they fall into C-even and C-odd relations,
respectively. These are listed below together with a pos-
sible choice of structures thus rendered redundant. Here,
A1A2A3 + perm. stands for the product of the three ma-
trices in all possible orders given by the six possible per-
mutations of the indices {1, 2, 3} summed up. [ , ] and
{ , } stand for commutators and anti-commutators, re-
spectively. Γ represents an element of the Clifford algebra.

C-even:
Tr

{

(BBA1 + perm.)A2

}

Tr {A3} (A.1)

is used to eliminate

Tr
{

BA1

}

ΓTr {A2B}Tr {A3}

+Tr
{

BA2

}

ΓTr {A1B}Tr {A3} , (A.2)

and accordingly for Tr
{

(BBA1 + perm.)A3

}

Tr {A2} and

Tr
{

(BBA2 + perm.)A3

}

Tr {A1}:

Tr
{

(BBA1 + perm.) {A2, A3}
}

,

Tr
{

(BBA2 + perm.) {A1, A3}
}

,

Tr
{

(BBA3 + perm.) {A1, A2}
}

,

Tr
{

(A1A2A3 + perm.)
[

B,B
]}

,

Tr
{

(BA2A3 + perm.)
[

B,A1

]}

+Tr
{

(BA2A3 + perm.) [A1, B]
}

,

Tr
{

(BA1A3 + perm.)
[

B,A2

]}

+Tr
{

(BA1A3 + perm.) [A2, B]
}

,

Tr
{

(BA1A2 + perm.)
{

B,A3

}}

+Tr
{

(BA1A2 + perm.) {A3, B}
}

(A.3)

is used to eliminate

Tr
{

BΓ {A1, B}
}

Tr {A2A3} ,

Tr
{

BΓ {A2, B}
}

Tr {A1A3} ,

Tr
{

BΓ {A3, B}
}

Tr {A1A2} ,

Tr
{

BΓ [A1, B]
}

Tr {A2A3} ,

Tr
{

BΓ [A2, B]
}

Tr {A1A3} ,

Tr
{

BΓ [A3, B]
}

Tr {A1A2} ,
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Tr
{

BA3

}

ΓTr {{A1, A2}B}

+Tr
{

B {A1, A2}
}

ΓTr {A3B} , (A.4)

where the final relation is understood in its totally sym-
metric combination.

C-odd:

Tr
{

(BBA1 + perm.) [A2, A3]
}

,

Tr
{

(BBA2 + perm.) [A1, A3]
}

,

Tr
{

(BBA3 + perm.) [A1, A2]
}

,

Tr
{

(BA2A3 + perm.)
{

B,A1

}}

−Tr
{

(BA2A3 + perm.) {A1, B}
}

,

Tr
{

(BA1A3 + perm.)
{

B,A2

}}

−Tr
{

(BA1A3 + perm.) {A2, B}
}

(A.5)

is used to eliminate

Tr
{

BA1

}

ΓTr {[A2, A3]B}

+Tr
{

B [A2, A3]
}

ΓTr {A1B} ,

Tr
{

BA2

}

ΓTr {[A1, A3]B}

+Tr
{

B [A1, A3]
}

ΓTr {A2B} ,

Tr
{

BA3

}

ΓTr {[A1, A2]B}

+Tr
{

B [A1, A2]
}

ΓTr {A3B} ,

Tr
{

BA1

}

ΓTr {{A2, A3}B}

−Tr
{

B {A2, A3}
}

ΓTr {A1B} ,

Tr
{

BA2

}

ΓTr {{A1, A3}B}

−Tr
{

B {A1, A3}
}

ΓTr {A2B} , (A.6)

where the final two relations are understood in their 1↔ 3
anti-symmetric and 2 ↔ 3 anti-symmetric combinations,
respectively.
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